❶ 品管七大手法的相关图书
品管七大手法
作者: 周建华出 版 社:东方音像电子出版社
出版日期:2007年12月5日
一、讲师简介 周建华 老师曾学习国家注册审核员、6sigma Black Belt,擅长SPC , QCC、DOE、5S、基层干部与现场管理、品管手法、领导与激励等管理课程培训,6sigma项培训,ISO9001、ISO14001、OHSAS18001 QS9000 TS16949体系咨询。长期从事辅导及培训工作,具有丰富的经验,辅导的客户有:Philips Semiconctors、Allied Telesis、力捷电脑、科德印刷电路板、马培德文具、三丽眼镜、中天电脑logitech supplie、上海电缆厂十分厂、吴江中达电子、EFORE安伏电子等。 二、内容简介 品管七大手法是品质管理工作中最基本也是必不可缺的,在品质问题的处理和数据的初步整理中起了重要的作用。通过对七种方法的理解,我们可以运用简单易懂的方法找到影响产品品质的问题并加以对症下药。通过本课程的学习,将使您掌握最基本的品管工具,充分了解本企业产品的品质情况,能够在质量改进过程的初期就找出存在的问题并及时改进。 三、课程大纲 (一)品管相关概念介绍 1.流程的概念及三个阶段 2.衡量过程价值的增值与简化 3.数据类型分类 4.测量系统分析(二)品管七大手法—数据分层法与统计分析表1.测量系统分析中的数据分析 2.测量系统出现的问题 3.协方差概念 (三)品管七大手法—检查表1.检查表的作用 2.收集数据的方式和意义 3.操作定义及五大要素 4.取样的两种方式、作用及目的 (四)品管七大手法—柏拉图、鱼骨图 1.柏拉图的概念及作用 2.柏拉图存在的问题 3.判断柏拉图中优先改善项的方法 4.鱼骨图及其作用 5.画鱼骨图的注意事项 (五)品管七大手法—直方图1.将文字转换成数据的两种方法 2.风险优先指数(RPN) 3.直方图及其作用 4.数据的正态分布(六)品管七大手法—控制图1.控制图与直方图的内在联系 2.画控制图的必须两个条件 3.控制图的原理 4.取样频率要求 5.标准差的估算 6.层别图与散布图
❷ 品管七大手法
质量管理七大手法,又称为初级统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、直方图等所谓的QC七工具。这个称为旧七大手法。
质量管理新七大手法:
一、树图
树图就是以“目的—方法”或“结果—原因”层层展开分析,以寻找最恰当的方法和最根本的原因,因其形状如大树分枝,因此取名树图,目前在企业界被广泛应用。
二、关连图
关连图就是把现象与问题有关系的各种因素串联起来的图形。通过连图可以找出与此问题有关系的一切要图,从而进一步抓住重点问题并寻求解决对策。
三、亲和图
亲和图也叫KJ法,是指把收集到大量的各种数据、资料,按照其之间的亲和性(相近性)归纳整理,使问题明朗化,从而有利于问题解决的一种方法。
四、矩阵图
矩阵图是指从问题事项中找出成对的因素群,分别排列成行和列,找出其间行与列的相关性或相关程度大小的一种方法。
五、矢线图
矢线图即网络分析技术,是以工序之间相互联系的网络图和较为简单的计算方法来反映整个工程或任务的全貌,指出对全局有影响的关键工序和关键路线,从而做出切合实际的统筹安排。
六、PDPC法
PDPC法是英文原名ProcessDecision Program Chart的缩写,中文称之为过程决策程序图法。所谓PDPC法是指为实现某一目的进行多方案设计,以应对实施过程中产生的各种变化的一种计划方法。
七、矩阵数据分析法
矩阵数据分析法是指通过运用主要成分分析等计算方法,准确地整理和分析在矩阵图上用数据定量化表示的各元素间关系的一种方法。是一种定量分析问题的方法。在品质管理新七大手法中,矩阵数据分析法是唯一一种利用数据分析问题的方法
QC7つ道具 : 1、 グラフ 2、管理図3、パレート図 4、特性要因図 5、ヒストグラム 6、チェックシート 7、散布図 グラフ/管理図 代表的な物として、X-R管理図がある。この手法を用いる事により、上限値??下限値を定め工程又は仓库内が常に安定した状态かどうかを把握する事が出来る。その他にもP管理図、Pn管理図、C管理図などがある。 パレート図 问题解决の的を绞るのに有効な手法で、问题となっている重要项目がひと目でわかり且つ、全体に占める割合がわかる。また问题解决の的が绞りやすく、効率的な改善活动が出来るうえに、改善効果や今後の课题がひと目でわかるのが特徴である。 特性要因図 不适合が発生した时などに特性と要因を调べ、その原因を取り除く対策として行う手法である。特徴として、结果と原因との関系が系统的に整理され、しかも原因を追求していくのに役立つ。又対象工程の问题点、管理状况など工程の现状を理解することに役立つものである。この手法を用いる时は関系者を集め、ディスカッションしながら作成するのが良い。 ヒストグラム バラつき状态を把握するために用いる手法で、同じ作业者が、同じ材料??设备??机械??作业方法で同一条件のもとで加工しても、その出来栄えにはバラツキが生じる。その分布状态を表したものである。 散布図 2つの対となったデータを打点にし、その関系の有无を调べる为に用いられる手法で、お互いにどんな関系があるか相関関系を把握する为に用いるものである。 チェックシート これらの??????????????を用いて、日々の调査记録を作成し、色々な手法を用いる为に必要なデータを入手するものである
❸ 品管七大手法和四大原则
一、起源
新旧七种工具都是由日本人总结出来的。日本人在提出旧七种工具推行并获得成功之后,1979年又提出新七种工具。之所以称之为“七种工具”,是因为日本古代武士在出阵作战时,经常携带有七种武器,所谓七种工具就是沿用了七种武器。
有用的质量统计管理工具当然不止七种。除了新旧七种工具以外,常用的工具还有实验设计、分布图、推移图等。
本次课程,主要讲的是QC七大手法,而SPC(管制图)是QC七大手法的核心部分,是本次培训的重点内容。
二、旧七种工具
QC旧七大手法指的是:检查表、层别法、柏拉图、因果图、散布图、直方图、管制图。
旧七种工具是我们本次课程的内容,也是我们将要大力推行的管理方法。从某种意义上讲,推行QC七大手法的情况,一定程度上表明了公司管理的先进程度。这些手法的应用之成败,将成为公司升级市场的一个重要方面:几乎所有的OEM客户,都会把统计技术应用情况作为审核的重要方面,例如TDI、MOTOROLA等。
三、新七种工具
QC新七大手法指的是:关系图法、KJ法、系统图法、矩阵图法、矩阵数据分析法、PDPC法、网络图法。
相对而言,新七大手法在世界上的推广应用远不如旧七大手法,也从未成为顾客审核的重要方面。
第二章 层别法
一、定义
层别法是所有手法中最基本的概念,亦即将多种多样的资料,因应目的的需要分成不同的类别,使之方便以后的分析。
二、通常的层别方法
使用的最多的是空间别:
作业员:不同拉、班、组别
机器:不同机器别
原料、零件:不同供给厂家别
作业条件:不同的温度、压力、湿度、作业场所
产品:不同的产品别(如同时生产Ni-Cd和Ni-MH电池)
时间别:不同批别、不同时间生产的产品
其他:如使用不同的工艺方法生产的同种产品别
三、应用
层别法的应用,主要是一种系统概念,即在于要想把相当复杂的资料进行处理,就得懂得如何把这些资料加以有系统有目的的加以分门别类的归纳及统计。 第三章 检查表
一、概述
检查表是QC七大手法中最简单也是使用得最多的手法。但或许正因为其简单而不受重视,所以检查表使用的过程中存在的问题不少。不妨看看我们现在正在使用的各种报表,是不是有很多栏目空缺?是不是有很多栏目的内容用笔进行了修改?是不是有很多栏目内容有待修改?
二、定义
以简单的数据,用容易理解的方式,制成图形或表格,必要时记上检查记号,并加以统计整理,作为进一步分析或核对检查之用。
三、目的
记录某种事件发生的频率。
四、时机
1.当你必须记下某种事件发生的具体情况时;
2.当你想了解某件事件发生的次数时;
3.当你想收集资讯时。
五、检查表种类
1.不合格项目的检查表;
2.工序分布检查表;
3.缺陷位置检查表;
4.操作检查表。
六、使用检查表的注意事项
1.应尽量取得分层的信息;
2.应尽量简便地取得数据;
3.应立即与措施结合。应事先规定对什么样的数据发出警告,停止生产或向上级报告。
4.检查项目如果是很久以前制订现已不适用的,必须重新研究和修订 5.通常情况下归类中不能出现“其他问题类”。
第四章 柏拉图
一、起源
意大利经济学家Vilfredo.Pareto巴雷托(柏拉图)在分析社会财富分配时设计出的一种统计图,美国品管大师Joseph Juran将之加以应用到质量管理中。柏拉图能够充分反映出“少数关键、多数次要”的规律,也就是说柏拉图是一种寻找主要因素、抓住主要矛盾的手法。例如:少数用户占有大部分销售额、设备故障停顿时间大部分由少数故障引起,不合格品中大多数由少数人员造成等。
二、定义
根据收集的数据,以不良原因、不良状况、不良发生的位置分类;计算各项目所占的比例按大小顺序排列,再加上累积值的图形。
按照累计的百分数可以将各项分成三类:
0~80%为A类,显然是主要问题点;
80~90%为B类,是次要因素;
90~100%为C类,是一般因素。
三、作图步骤
1.搜集数据;如063048正极片批量为20000PCS,不良品中变形600,露铝360,硬块120,暗痕60,其他不良60。
2.作出分项统计表(按原因、人员、工序、不良项目等)A把分类项目按频数大小从大到小进行排列,至于“其他”项,不论其频数大小均放在最后; B计算各项目的累计频数;C计算各项目在全体项目中所占比率(即频率)D计算累计比率。(示范表格见下页)
示范表格(正极制片不良分项统计表,总批量20000PCS):
项目 数量 累计数 比率% 累计比率%
变形 600 600 50% 50%
露铝 360 960 30% 80%
硬块 120 1080 10% 90%
暗痕 60 1140 5% 95%
其他 60 1200 5% 100%
3.绘制排列图
A纵轴:
左:频数刻度,最大为总件数
右:频率(比率)刻度,最大数为100%。
注:总件数与最大数100%应保持在同一水平线上。
B横轴:按频数大小用直方柱在横轴上表示各项目(从左至右)
C依次累加频率,并连接成线。
4.记入必要事项,如:图题、取数据时间、制图人、制图时间、检查产品总数、总频数等等。
示范图(见下页)
很明显,上图中变形和露铝为A类不良项,需立即采取措施改善;硬块为B类不良项;暗痕和其他为C类不良项。B、C两类可稍后再采取措施改善。
四、使用排列图的注意事项
1.抓住“少数关键”,把累计比率分为三类:A、B、C;
2.用来确定采取措施的顺序;
3.对照采取措施前后的排列图,研究各个组成项目的变化,可以对措施的效果进行鉴定;
4.利用排列图不仅可以找到一个问题的主要矛盾,而且可以连续使用找到复杂问题的最终原因;
5.现场应注意将排列图、因果图等质量管理方法的综合运用。如可以使用因果图对造成变形和露铝的原因进行进一步的分析。
第五章 因果图
一、概述
因果图最先由日本品管大师石川馨提出来的,故又叫石川图,同时因其形状,又叫鱼刺图、鱼骨图、树枝图。还有一个名称叫特性要因图。
一个质量问题的发生往往不是单纯一种或几种原因的结果,而是多种因素综合作用的结果。要从这些错综复杂的因素中理出头绪,抓住关键因素,就需要利用科学方法,从质量问题这个“结果”出发,依靠群众,集思广益,由表及里,逐步深入,直到找到根源为止。
因果图就是用来根据结果寻找原因的一种QC手法。
二、定义
用以找出造成某问题可能原因的图表。
三、因果图可用来分析的问题类型
1.表示产品质量的特性:尺寸、强度、寿命、不合格率、废品件数、纯度、透光度等;
2.费用特性:价格、收率、工时数、管理费用等;
3.产量特性:产量、交货时间、计划时间等
4.其他特性:出勤率、差错件数、合理化建议件数
四、因果图的作图步骤
1.确定问题
2.画粗箭头
3.因素即原因分类
常用:4M1E即人(员)、机(器)、料(原料)、法(工艺方法)、环(境),有时还可以补充软(件)、辅(助材料)、公(用设施)三方面。
也可用:工序顺序等分类
分类好后,用中箭头与主箭头成45°角画在主箭头两侧。
4.对中箭头所代表的一类因素,要进一步将与其有关的因素以小箭头画到中箭头上去,如有必要,可再次细分至可以直接采取行动为止。
5.检查所列因素有无遗漏,如有遗漏应予补充。
6.各箭头末端的因素中,凡影响重大的重要因素可加上小圈等记号,按已有数据、搜集不到数据、未取数据等情况,还可加上其他简便记号。
7.记入有关事项,如参加人员、制图者、制定日期等。
五、注意事项
1.实质上是枚举法,故要走群众路线,集中讨论;
2.最好采用能用数值表示的问题;
3.最细的原因要具体,以便采取措施;
4.对应于一个特性可以作几个因果图,如可按4M1E作图,也可按工序进行分类,分别作因果图。重要原因可以抽出再作新的因果图。
5.综合运用如排列图、对策表等;
6.复印几份加以保存,以便以后不断追加新内容。
六、因果图与排列图联用
1.建立柏拉图须先以层别建立要求目的之统计表;
2.建立柏拉图之目的,在于掌握影响全局较大的[重要少数项目];
3.再利用因果图针对这些项目形成的要素逐予探讨,并采取改善对策;
七、另一种作图步骤(形象)
1.集合有关人员召集与此问题相关的、有经验的人员,人数最好4-10人,并推选一人主导(主持人);
2.挂一张大白纸,准备2~3支色笔;
3.由集合的人员就影响问题的要因发言,发言内容记入图上,中途不可批评或质问(脑力激荡法);
4.时间大约1小时,搜集20~30个原因即可结束;
5.就所搜集的原因,何者影响最大,再由大家轮流发言,经大家磋商后,认为影响较大的因素圈上红圈;
6.与5一样,针对已画上一个红圈的,若认为最重要的可以再圈上两圈、三圈;
7.重新画一张因果图,未上圈的予以去除,圈数多的列为优先处理。
八、因果图示范图
九、因果卡图简介
因果卡图是在因果图的基础上发展出来的,又称为CEDAC(Cause Effect Diagram And Cards)图。
因果卡图一般长宽各数米,大多公开张贴于生产作业现场或技术攻关地点的醒目位置,因果卡图的一般结构是:右上方为问题栏,简要说明问题的现状,作为进行质量改进的依据,右下方写明质量改进项目的目标(一般用定量值表示)、项目负责人以及项目实施期限;右方中间为质量随着本项目的实施的变化曲线;左方为鱼刺图形,鱼刺两旁分别张贴用颜色区分的原因分析卡和措施方法卡;下方钉有两只标上“原因”和“措施”字样的大口袋,分别装有两种不同颜色的卡片,供参与者填写之用。然后将卡片按一定规则分类(如4M1E)张贴于鱼刺图形上。如可以规定鱼刺的左边张贴原因卡,右边张贴措施卡,用横线将对应的原因卡与措施卡相联。
第六章 散布图法
一、定义
散布图是用来表示一组成对的数据之间是否有相关性的一种图表。这种成对的数据或许是[特性—要因]、[特性—特性]、[要因—要因]的关系。
二、散布图的分类
1.正相关(如容量和附料重量)
2.负相关(油的粘度与温度)
3.不相关(气压与气温)
4.弱正相关(身高和体重)
5.弱负相关(温度与步伐)
三、散布图的绘制程序
1.收集资料(至少三十组以上)
2.找出数据中的最大值与最小值;
3.准备座标纸,画出纵轴、横轴的刻度,计算组距。通常用纵轴代表结果,横轴代表原因。组距的计算以数据中的最大值减最小值再除以所需设定的组数求得。是否一定需分组?
4.将各组对应数标示在座标上;
5.填上资料的收集地点、时间、测定方法、制作者等项目。
四、散布图的应用
当不知道两个因素之间的关系或两个因素之间关系在认识上比较模糊而需要对这两个因素之间的关系进行调查和确认时,可以通过散布图来确认二者之间的关系。实际上是一种实验的方法。
需要强调的是,在使用散布图调查两个因素之间的关系时,应尽可能固定对这两个因素有影响的其他因素,才能使通过散布图得到的结果比较准确。
五、散布图五种类型的示范图(见下页)
第七章 直方图法
一、定义:
为要容易的看出如长度、重量、时间、硬度等计量什的数据之分配情形,所用来表示的图形。
直方图是将所收集的测定值或数据之全距分为几个相等的区间作为横轴,并将各区间内之测定值所出现次数累积而成的面积,用柱子排起来的图形,故我们亦称之为柱状图。
二、直方图的作图步骤
1.收集记录数据
2.定组数
3.找到最大值L及最小值S,计算全距R
R=L-S
4.定组距
R÷组数=组距
5.定组界
最小一组的下组界=S-[测量值的最小位数×0.5]
最小一组的上组界=最小一组的下组界+组距
依次类推。
6.决定中心点
(上组界+下组界) ÷2=组的中心点
7.制作次数分布表
8.制作直方图
9.填上次数、规格、平均值、数据源、日期
三、直方图之功用
1.评估或查验制程;
2.指出采取行动的必要;
3.量测已采取矫正行动的效果;
4.比较机械绩效;
5.比较物料;
6.比较供应商。
❹ 品管七大手法解释
品管七大手法是常用的统计管理方法,又称为初级统计管理方法。它主要包括控制图、因果图、相关图、排列图、统计分析表、数据分层法、散布图等所谓的QC七工具。运用这些工具,可以从经常变化的生产过程中,系统地收集与产品质量有关的各种数据,并用统计方法对数据进行整理,加工和分析,进而画出各种
图表,计算某些数据指标,从中找出质量变化的规律,实现对质量的控制。日本著名的质量管理专家石川馨曾说过,企业内95%的质量管理问题,可通过企业上上下下全体人员活用这QC七工具而得到解决。全面质量管理的推行,也离不开企业各级、各部门人员对这些工具的掌握与灵活应用。
1、 统计分析表
统计分析表是利用统计表对数据进行整理和初步分析原因的一种工具,其格式可多种多样,这种方法虽然较单,但实用有效。
2、 数据分层法
数据分层法就是性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多如果不把这些困素区别开来,难以得出变化的规律。数据分层可根据实际情况按多种方式进行。例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,原材料成分进行分层,按检查手段,使用条件进行分层,按不同缺陷项目进行分层,等等。数据分层法经常与上述的统计分析表结合使用。
数据分层法的应用,主要是一种系统概念,即在于要想把相当复杂的资料进行处理,就得懂得如何把这些资料加以有系统有目的加以分门别类的归纳及统计。
科学管理强调的是以管理的技法来弥补以往靠经验靠视觉判断的管理的不足。而此管理技法,除了建立正确的理念外,更需要有数据的运用,才有办法进行工作解析及采取正确的措施。
如何建立原始的数据及将这些数据依据所需要的目的进行集计,也是诸多品管手法的最基础工作。
举个例子:我国航空市场近几年随着开放而竞争日趋激烈,航空公司为了争取市场除了加强各种措施外,也在服务品质方面下功夫。我们也可以经常在航机上看到客户满意度的调查。此调查是通过调查表来进行的。调查表的设计通常分为地面的服务品质及航机上的服务品质。地面又分为订票,候机;航机又分为空服态度,餐饮,卫生等。透过这些调查,将这些数据予以集计,就可得到从何处加强服务品质了。
3、排列图(柏拉图)
排列图又称为柏拉图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。后来美国质量管理专家朱兰博士运用柏拉图的统计图加以延伸将其用于质量管理。排列图是分析和寻找影响质量主原因素的一种工具,其形式用双直角坐标图,左边纵坐标表示频数(如件数 金额等),右边纵坐标表示频率(如百分比表示)。分折线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左向右排列。通过对排列图的观察分析可抓住影响质量的主原因素。这种方法实际上不仅在质量管理中,在其他许多管理工作中,例如在库存管理中,都有是十分有用的。
在质量管理过程中,要解决的问题很多,但往往不知从哪里着手,但事实上大部分的问题,只要能找出几个影响较大的原因,并加以处置及控制,就可解决问题的80%以上。柏拉图是根据归集的数据,以不良原因,不良状况发生的现象,有系统地加以项目别(层别)分类,计算出各项目别所产生的数据(如不良率,损失金额)及所占的比例,再依照大小顺序排列,再加上累积值的图形。
在工厂或办公室里,把低效率,缺损,制品不良等损失按其原因别或现象别,也可换算成损失金额的80%以上的项目加以追究处理,这就是所谓的柏拉图分析。
柏拉图的使用要以层别法的项目别(现象别)为前提,依经顺位调整过后的统计表才能画制成柏拉图。
柏拉图分析的步骤;
(1) 将要处置的事,以状况(现象)或原因加以层别。
(2) 纵轴虽可以表示件数,但最好以金额表示比较强烈。
(3) 决定搜集资料的期间,自何时至何时,作为柏拉图资料的依据,期限间尽可能定期。
(4) 各项目依照合半之大小顺位左至右排列在横轴上。
(5) 绘上柱状图。
(6) 连接累积曲线。
柏拉图法(重点管制法),提供了我们在没法面面俱到的状况下,去抓重要的事情,关键的事情,而这些重要的事情又不是靠直觉判断得来的,而是有数据依据的,并用图形来加强表示。也就是层别法提供了统计的基础,柏拉图法则可帮助我们抓住关键性的事情。
4、因果分析图
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。
某项结果之形成,必定有原因,应设法利用图解法找出其因。首先提出了这个概念的是日本品管权威石川馨博士,所以特性原因图又称[石川图]。因果分析图,可使用在一般管理及工作改善的各种阶段,特别是树立意识的初期,易于使问题的原因明朗化,从而设计步骤解决问题。
(1) 果分析图使用步骤
步骤1:集合有关人员。
召集与此问题相关的,有经验的人员,人数最好4-10人。
步骤2:挂一张大白纸,准备2-3支色笔。
步骤3:由集合的人员就影响问题的原因发言,发言内容记入图上,中途不可批评或质问。(脑力激荡 法)
步骤4:时间大约1个小时,搜集20-30个原因则可结束。
步骤5:就所搜集的原因,何者影响最大,再由大轮流发言,经大家磋商后,认为影响较大予圈上红色 圈。
步骤6:与步骤5一样,针对已圈上一个红圈的,若认为最重要的可以再圈上两圈,三圈。
步骤7:重新画一张原因图,未上圈的予于去除,圈数愈多的列为最优先处理。
因果分析图提供的是抓取重要原因的工具,所以参加的人员应包含对此项工作具有经验者,才易秦效。
(2)因果分析图与柏拉图之使用
建立柏拉图须先以层别建立要求目的之统计表。建立柏拉图之目的,在于掌握影响全局较大的重要少数项目。再利用特性原因图针对这些项目形成的原因逐予于探讨,并采取改善对策。所以因果分析图可以单独使用,也可连接柏拉图使用。
(3) 因果分析图再分析
要对问题形成的原因追根究底,才能从根本上解决问题。形成问题之主要原因找出来以后,再以实验设计的方法进行实验分析,拟具体实验方法,找出最佳工作方法,问题也许能得以彻底解决,这是解决问题,更是预防问题。
任何一个人,任何一个企业均有它追求的目标,但在追求目标的过程中,总会有许许多多有形与无形的障碍,而这些障碍是什么,这些障碍何于形成,这些障碍如何破解等问题,就是原因分析图法主要的概念。
一个管理人员,在他的管理工作范围内所追求的目标,假如加以具体的归纳,我们可得知从项目来说不是很多。然而就每个追求的项目来说,都有会有影响其达成目的的主要原因及次要原因,这些原因就是阻碍你达成工作的变数。
如何将追求的项目一一地罗列出来,并将影响每个项目达成的主要原因及次要原因也整理出来,并使用因果分析图来表示,并针对这些原因有计划地加以强化,将会使你的管理工作更加得心应手。
同样地,有了这些原因分析图,即使发生问题,在解析问题的过程中,也能更快速,更可靠。
5、直方图
直方图又称柱状图,它是表示数据变化情况的一种主要工具。用直方图可以将杂乱无章的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对于资料中心值或分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉到一些统计学的概念,首先要对数据进行分组,因此如何合理分组是其中的关键问题。分组通常是按组距相等的原则进行的两个关键数字是分组数和组距。
6、散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。这种问题在实际生产中也是常见的,例如热处理时淬火温度与工件硬度之间的关系,某种元素在材料中的含量与材料强度的关系等。这种关系虽然存在,但又难以用精确的公式或函数关系表示,在这种情况下用相关图来分析就是很方便的。假定有一对变量x 和 y,x 表示某一种影响因素,y 表示某一质量特征值,通过实验或收集到的x 和 y 的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断 x和 y 的相关情况。
在我们的生活及工作中,许多现象和原因,有些呈规则的关连,有些呈不规则形有关连。我们要了解它,就可借助散布图统计手法来判断它们之间的相关关系。
7、控制图
控制图又称为管制图。由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出管制图使用后,管制图就一直成为科学管理的一个重要工具,特别在质量管理方面成了一个不可或缺的管理工具。它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
统计管理方法是进行质量控制的有效工具,但在应用中必须注意以下几个问题,否则的话就得不到应有的效果。这些问题主要是:1 )数据有误。数据有误可能是两种原因造成的,一是人为的使用有误数据,二是由于未真正掌握统计方法;2 )数据的采集方法不正确。如果抽样方法本身有误则其后的分析方法再正确也是无用的;3) 数据的记录,抄写有误;4 )异常值的处理。通常在生产过程取得的数据中总是含有一些异常值的,它们会导致分析结果有误。
以上概要介绍了七种常用初级统计质量管理七大手法即所谓的“QC七工具”,这些方法集中体现了质量管理的“以事实和数据为基础进行判断和管理”的特点。最后还需指出的是,这些方法看起来都比较简单,但能够在实际工作中正确灵活地应用并不是一件简单的事。
❺ 《品管七大手法》的主要内容是什么
品管七大手法是常用的统计管理方法,又称为初级统计管理方法。
品管七大手法是专品质管理工作属中最基本也是必不可缺的,在品质问题的处理和数据的初步整理中起了重要的作用。通过对七种方法的理解,我们可以运用简单易懂的方法找到影响产品品质的问题并加以对症下药。通过本课程的学习,将使您掌握最基本的品管工具,充分了解本企业产品的品质情况,能够在质量改进过程的初期就找出存在的问题并及时改进。
它主要包括
1.控制图
2.因果图
3.直方图
4.排列图
5.检查表
6.层别法
7.散布图 等所谓的QC七工具
❻ 品管七大手法是什么
品管七大手法是常用的统计管理方法,又称为初级统计管理方法。它主要包括控制图、因果图、直方图、排列图、检查表、层别法、散布图等所谓的QC七工具。
其实,质量管理的方法可以分为两大类:一是建立在全面质量管理思想之上的组织性的质量管理;二是以数理统计方法为基础的质量控制。
组织性的质量管理方法是指从组织结构,业务流程和人员工作方式的角度进行质量管理的方法,它建立在全面质量管理的思想之上,主要内容有制定质量方针,建立质量保证体系,开展QC小组活动,各部门质量责任的分担,进行质量诊断等。
(6)品管七大手法培训心得扩展阅读
1、控制图
它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。
2、因果分析图
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。
3、直方图
它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。
4、排列图
排列图又称为柏拉图、重点分析图、ABC分析图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。
5、检查表
检查表是利用统计表对数据进行整理和初步原因分析的一种工具,其格式可多种多样,这种方法虽然较简单,但实用有效,主要作为记录或者点检所用。
6、数据分层法
数据分层法又称为层别法就是将性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。
7、散布图
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。
❼ 我懂七大手法可以当品质工程师吗
首先:自己一定要搞清楚QC七大手法的作用是什么!
其次:在品质活动中所采用的统计方法,即我们常讲的“品管七大手法”和“品管新七大手法”,他们完全不是一回事,请不要混为一谈。
品管七大手法:
检查表——收集、整理资料;
排列图——确定主导因素;
散布图——展示变数之间的线性关系;
因果图——寻找引发结果的原因;
分层法——从不同角度层面发现问题;
直方图——展示过程的分布情况;
控制图——识别波动的来源.
品管新七大手法的来源:
1972年日本科技联盟整理出七个新手法;
1977年在日本开始在企业中推行实施;
1978年由日本水野滋、近藤良夫教授召开研讨会命名为“品管新七大手法”;
1979年日本科技联盟正式公布品管新七大手法。
品管新七大手法的使用情形,可归纳如下:
关联图——理清复杂因素间的关系;
系统图——系统地寻求实现目标的手段;
亲和图——从杂乱的语言资料中汲取资讯;
矩阵图——多角度考察存在的问题,变数关系;
PDPC法——预测设计中可能出现的障碍和结果;
箭条图——合理制定进度计划;
矩阵资料解析法—多变数转化少变数资料分析;
品管新七大手法在品管手法中的地位:
并不取代品管七大手法,与品管七大手法相辅相成。
所以能不能胜任就要看自己到底学到什么程度了?广义的说这个没有什么行业界限的,套路都是一样的,唯一不一样的就是个子运用的方法不同。
希望以上能对你有所帮助,谢谢!
❽ 什么是品管七大手法
品管七大手法(英语:Seven Basic Tools of Quality),又称QC七大手法或初级统计管理方法或Q7,为品质管制上经常使用的七种工具。是指一套固定的图形技术,可用于确认制造过程中与产量、品质相关的问题;它们被称为基本的,因为它们适合没有接受过统计学正规培训的人。
品管七大手法源自世界二战后的日本,可能是由 Kaoru Ishikawa 以武蔵坊弁庆的七种武器比喻而介绍的;后者又受到爱德华兹·戴明在1950年,向日本工程师和科学家所做的一系列演讲的影响。当时,那些对他们的劳动力培训品质管制的公司发现,品管的统计问题复杂性刁难了绝大多数的工人,为了降低难度,培训课程主要集中在更简单方便的品管方法上,而这些方法足够解决大多数和品管相关的问题。
这七种基本工具与更进阶的统计技术(如调查取样,验收取样,统计假设检验,实验设计,多变量分析以及运筹学领域开发的各种方法)形成对比。专案管理协会在专案管理知识体系的参考指南中,提及这七种基本手法,可作为一套用于规划或控制专案品质的常规工具。
(8)品管七大手法培训心得扩展阅读:
七大手法
1、鱼骨图(石川图、因果图、特性要因图):可找出问题的根源及肇因。
2、管制图:以样本平均值为中心,上下各三个标准差为控制上下限(6 sigma),须注意连续七个点落在平均值上方或下方(Rule of 7)的规则。
3、直方图:以统计的方式呈现分布之中间趋向及散布的形状,不考虑时间的影响。
4、查检表(理货单):资料搜集时使用,统计的数量再以柏拉图呈现。
5、柏拉图:以发生的频率累计排序的呈现,大多应用于80/20。
6、散布图(相关图):呈现两个变数间彼此的相关程度(正相关、负相关及零相关)
7、层别法:将资料分类找出其趋势或特性。(概念可参考统计学概念分层抽样)
❾ 品管七大手法是怎样运用的
品管七大手法又称新旧QC七大工具(手法):
一. 旧QC七大手法:
1).检查表(Tally Sheet);
检查表是利用统计表对数据进行整理和初步原因分析的一种工具,其格式可多种多样,这种方法虽然较简单,但实用有效,主要作为记录或者点检所用。
2).数据分层法(Data Stratification);
数据分层法又称为层别法就是将性质相同的,在同一条件下收集的数据归纳在一起,以便进行比较分析。因为在实际生产中,影响质量变动的因素很多,如果不把这些因素区别开来,则难以得出变化的规律。数据分层可根据实际情况按多种方式进行。例如,按不同时间,不同班次进行分层,按使用设备的种类进行分层,按原材料的进料时间,按原材料成分进行分层,按检查手段,按使用条件进行分层,按不同缺陷项目进行分层,等等。数据分层法经常与上述的统计分析表结合使用。
数据分层法的应用,主要是一种系统概念,即在于要处理相当复杂的资料,就得懂得如何把这些资料有系统、有目的地加以分门别类的归纳及统计。科学管理强调的是以管理的技法,来弥补以往靠经验、靠视觉判断的管理的不足。而此管理技法,除了建立正确的理念外,更需要有数据的运用,才有办法进行工作解析及采取正确的措施。
3).排列图(或帕累托图)(Pareto Diagram);
排列图又称为柏拉图、重点分析图、ABC分析图,由此图的发明者19世纪意大利经济学家柏拉图(Pareto)的名字而得名。柏拉图最早用排列图分析社会财富分布的状况,他发现当时意大利80%财富集中在20%的人手里,后来人们发现很多场合都服从这一规律,于是称之为Pareto定律。后来美国质量管理专家朱兰博士运用柏拉图的统计图加以延伸将其用于质量管理。排列图是分析和寻找影响质量主原因素的一种工具,其形式用双直角坐标图,左边纵坐标表示频数(如件数 金额等),右边纵坐标表示频率(如百分比表示)。分折线表示累积频率,横坐标表示影响质量的各项因素,按影响程度的大小(即出现频数多少)从左向右排列。通过对排列图的观察分析可抓住影响质量的主原因素。这种方法实际上不仅在质量管理中,在其他许多管理工作中,例如在库存管理中,都有是十分有用的。
柏拉图使用以层别法的项目别(现象别)为前提,依经顺位调整过后的统计表才能制成柏拉图。
柏拉图分析的步骤:
(1) 将要处置的事,以状况(现象)或原因加以层别;
(2) 纵轴虽可以表示件数,但最好以金额表示比较强烈;
(3) 决定搜集资料的期间,自何时至何时,作为柏拉图资料的依据,期限间尽可能定期;
(4) 各项目依照合半之大小顺位左至右排列在横轴上;
(5) 绘上柱状图;
(6) 连接累积曲线。
4).直方图(Histogram);
在质量管理中,如何预测并监控产品质量状况?如何对质量波动进行分析?直方图就是一目了然地把这些问题图表化处理的工具。它通过对收集到的貌似无序的数据进行处理,来反映产品质量的分布情况,判断和预测产品质量及不合格率。
直方图又称质量分布图,柱状图,它是表示资料变化情况的一种主要工具。用直方图可以解析出资料的规则性,比较直观地看出产品质量特性的分布状态,对於资料分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉学的概念,首先要对资料进行分组,因此如何合理分组是其中的关键问题。按组距相等的原则进行的两个关键数位是分组数和组距。是一种几何形图表,它是根据从生产过程中收集来的质量数据分布情况,画成以组距为底边、以频数为高度的一系列连接起来的直方型矩形图。作直方图的目的就是通过观察图的形状,判断生产过程是否稳定,预测生产过程的质量。具体来说,作直方图的目的有:①判断一批已加工完毕的产品;②验证工序的稳定性;③为计算工序能力搜集有关数据。直方图将数据根据差异进行分类,特点是明察秋毫地掌握差异。
直方图的作用:
(1)显示质量波动的状态;
(2)较直观地传递有关过程质量状况的信息;
(3)通过研究质量波动状况之后,就能掌握过程的状况,从而确定在什么地方集中力量进行质量改进工作。
5).因果分析图(Characteristic Diagram);
因果分析图是以结果作为特性,以原因作为因素,在它们之间用箭头联系表示因果关系。因果分析图是一种充分发动员工动脑筋,查原因,集思广益的好办法,也特别适合于工作小组中实行质量的民主管理。当出现了某种质量问题,未搞清楚原因时,可针对问题发动大家寻找可能的原因,使每个人都畅所欲言,把所有可能的原因都列出来。
所谓因果分析图,就是将造成某项结果的众多原因,以系统的方式图解,即以图来表达结果(特性)与原因(因素)之间的关系。其形状像鱼骨,又称鱼骨图。某项结果之形成,必定有原因,应设法利用图解法找出其因。首先提出了这个概念的是日本品管权威石川馨博士,所以特性原因图又称[石川图]。因果分析图,可使用在一般管理及工作改善的各种阶段,特别是树立意识的初期,易于使问题的原因明朗化,从而设计步骤解决问题。分析图使用步骤:步骤1:召集与此问题相关的,有经验的人员,人数最好4-10人。步骤2:挂一张大白纸,准备2-3支色笔。步骤3:由集合的人员就影响问题的原因发言,发言内容记入图上,中途不可批评或质问(脑力激荡法)。步骤4:时间大约1个小时,搜集20-30个原因则可结束。步骤5:就所搜集的原因,何者影响最大,再由大轮流发言,经大家磋商后,认为影响较大予圈上红色圈。步骤6:与步骤5一样,针对已圈上一个红圈的,若认为最重要的可以再圈上两圈,三圈。 步骤7:重新画一张原因图,未上圈的予于去除,圈数愈多的列为最优先处理。因果分析图提供的是抓取重要原因的工具,所以参加的人员应包含对此项工作具有经验者,才易奏效。 直方图(Histogram)直方图又称柱状图,它是表示数据变化情况的一种主要工具。用直方图可以将杂乱无章的资料,解析出规则性,比较直观地看出产品质量特性的分布状态,对于资料中心值或分布状况一目了然,便于判断其总体质量分布情况。在制作直方图时,牵涉到一些统计学的概念,首先要对数据进行分组,因此如何合理分组是其中的关键问题。分组通常是按组距相等的原则进行的两个关键数字是分组数和组距。
6).散布图(Scatter Diagram);
散布图又叫相关图,它是将两个可能相关的变量数据用点画在坐标图上,用来表示一组成对的数据之间是否有相关性。这种成对的数据或许是特性一原因,特性一特性,原因一原因的关系。通过对其观察分析,来判断两个变量之间的相关关系。这种问题在实际生产中也是常见的,例如热处理时淬火温度与工件硬度之间的关系,某种元素在材料中的含量与材料强度的关系等。这种关系虽然存在,但又难以用精确的公式或函数关系表示,在这种情况下用相关图来分析就是很方便的。假定有一对变量x 和 y,x 表示某一种影响因素,y 表示某一质量特征值,通过实验或收集到的x 和 y 的数据,可以在坐标图上用点表示出来,根据点的分布特点,就可以判断 x和 y 的相关情况。
7).管制图(或控制图)(Control Chart)
控制图又称为管制图。由美国的贝尔电话实验所的休哈特(W.A.Shewhart)博士在1924年首先提出,管制图使用后,就一直成为科学管理的一个重要工具,特别在质量管理方面成了一个不可或缺的管理工具。它是一种有控制界限的图,用来区分引起质量波动的原因是偶然的还是系统的,可以提供系统原因存在的信息,从而判断生产过程是否处于受控状态。控制图按其用途可分为两类,一类是供分析用的控制图,用控制图分析生产过程中有关质量特性值的变化情况,看工序是否处于稳定受控状;再一类是供管理用的控制图,主要用于发现生产过程是否出现了异常情况,以预防产生不合格品。
统计管理方法是进行质量控制的有效工具,但在应用中必须注意以下几个问题,否则的话就得不到应有的效果。这些问题主要是:1 )数据有误。数据有误可能是两种原因造成的,一是人为的使用有误数据,二是由于未真正掌握统计方法;2 )数据的采集方法不正确。如果抽样方法本身有误则其后的分析方法再正确也是无用的;3) 数据的记录,抄写有误;4 )异常值的处理。通常在生产过程取得的数据中总是含有一些异常值的,它们会导致分析结果有误。
以上概要介绍了七种常用初级统计质量管理七大手法即所谓的“QC七工具”,这些方法集中体现了质量管理的“以事实和数据为基础进行判断和管理”的特点。最后还需指出的是,这些方法看起来都比较简单,但能够在实际工作中正确灵活地应用并不是一件简单的事。
二. 新QC七大手法:
1).关联图(Relationship Diagram);
关联图,又称关系图,20世纪60年代由日本应庆大学千住镇雄教授提出,是用来分析事物之间“原因与结果”、“目的与手段”等复杂关系的一种图表,它能够帮助人们从事物之间的逻辑关系中,寻找出解决问题的办法。
2).亲和图(Affinity Diagram);
亲和图法,又叫KJ法,是日本川喜田二郎首创,把大量收集到的关于未知事物或不明确的事实的意见或构思等语言资料,按其相互亲和性(相近性)归纳整理这些资料,使问题明确起来,求得统一认识和协调工作,以利于问题解决的一种方法。
3).系统图(System Diagram);
系统图就是把要实现的目的与需要采取的措施或手段,系统地展开,并绘制成图, 以明确问题的重点,寻找最佳手段或措施的一种方法。
4).过程决策程序图(PDPC);
过程决策程序图,又称PDPC(Process Decision Program Chart)法是随事态的进展分析能导致各种结果的要素,并确定一个最优过程使之达到理想结果的方法。
5).矩阵图(Matrix Diagram);
矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。
6).矩阵数据分析法(Matrix Data Analysis Chart);
矩阵数据分析法是对多个变动且复杂的因果进行解析。 矩阵图上各元素间的关系如果能用数据定量化表示,就能更准确地整理和分析结果。这种可以用数据表示的矩阵图法,叫做矩阵数据分析法。在QC新七种工具中,数据矩阵分析法是唯一种利用数据分析问题的方法,但其结果仍要以图形表示。
7).箭条图(Arrow Diagram)
箭条图法是将项目推行时所需的各步骤、作业按从属关系用网络图表示出来的一种方法。
❿ 品管的七大手法有哪些
品管七大手法分复为两种:制
品管旧七大手法:控制图、因果图、直方图、排列图、检查表、层别法、散布图
品管新七大手法:亲和图、关联图、系统图、过程决定计划图、矩阵图、矩阵数据解析法、箭线图
品管七大手法是从日本传入中国,在翻译上有些名称说法略有不同