Ⅰ 怎样学习数学建模
数学建模知识应该具备的数学基础有高等数学、线性代数、概率论与数理统计,在此基础上重点看一下运筹学的书籍。当然,数学建模不仅仅是要求数学知识扎实,还需要参赛者广泛涉猎知识(包括物理、生物、心理学等),因为许多数学建模题目要求背景知识比较深,比如说12年MCM A题要求画出一棵树,这就需要参赛队员了解某类植物树叶生长具备的特点,涉及生物学知识;第二届MATHORCUP全球数学建模挑战赛A题也涉及到空气动力学知识。因此,数学建模是以数学为基础,综合各门学科(涵盖自然科学和社会科学)的一项赛事。
具备上述基础知识以后,就着重看一些建模方面的书籍,如:赵静和但琦的《数学建模与数学实验》、姜启源和谢金星的《数学模型》、《运筹学》、肖华勇的《实用数学建模与软件应用》。每一本书都有自己的特色,也没必要仔仔细细地把整本书都看完,甚至你可以只知道模型的大致步骤,真正用到的时候再翻书详细了解这个模型。因为数学建模本身就是一个学习的过程,在短短3天时间里,将陌生的知识转化成自己的知识是具有挑战的,更何况还要对模型进行改进,但是正是这样,我们才能不断接触新知识,不断培养自己的学习能力。
熟悉模型之后,基本能够看懂大部分的优秀论文了。个人认为看一些“高教杯”特等奖论文及美赛Outstanding对自己思路、知识、写作能力提升非常快,这些论文一般逻辑性很强,层次感出众。在欣赏优秀论文的过程中,还要注意模型的适用范围,举个例子来说,对于预测类的题目,比较常用的预测模型有时间序列模型、灰色预测模型、贝叶斯预测模型、神经网络预测模型等,这些模型并不是对所有的数据都是适的,有些模型需要先对数据进行剔除、平均等处理,这些细节需要特别注意,一旦不注意就会影响整篇论文的量。
上述三步进行之后,接下来就是实战演练了。参加完后主动找组委会要评语(因为那些评语里记录着你的不足,便于今后改正)。
Ⅱ 参加数学建模培训有用吗
本来在学习数学的过程中就遇到过很多困难,感觉很枯燥,很难学,概念抽象、逻辑严密等等,所以我的学习积极性慢慢就降低了,而且不知道学了要怎么用,不知道现实生活中哪里到。通过学习了数学模型中的好多模型后,我发现数学应用的广泛性。数学模型是一种模拟,使用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻画,他或能解释默写客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其他学科相结合形成的交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济的作用可谓是如虎添翼。
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为个数学问题,然后用适用的数学方法去解决。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力地数学手段。在学习中,我知道了数学建模的过程,其过程如下:
(1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。用数学语言来描述问题。
(2)模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确地语言提出一些恰当的假设。
(3)模型建立:在假设的基础上,利用适当的数学工具来刻画各变量之间的数学关系,建立相应的数学结构。
(4)模型求解:利用或取得的数据资料,对模型的所有参数做出计算。
(5)模型分析:对所得的结果进行数学上的分析。
(6)模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次进行建模过程。
数学模型既顺应时代发展的潮流,也符合教育改革的要求。对于数学教育而言,既应该让学生掌握准确快捷的计算方法和严密的逻辑推理,也需要培养学生用数学工具分析解决实际问题的意识和能力,传统的数学教学体系和内容无疑偏重于前者,而开设数学建模课程则是加强后者的一种尝试,数学建模的初衷是为了帮助大家提升分析问题,解决问题的能力。 我认为学习数学模型的意义有如下几点:一 学习数学模型我们可以参加数学建模竞赛,而数学建模竞赛是为了促进数学建模的发展而应运而生的,它可以培养大家的竞赛能力、抗压能力、问题设计能力、搜索资料的能力、计算机运用能力、论文写作与修改完善能力、语言表达能力、创新能力等科学综合素养,它让大家从传统的知识培养转变到能力的培养,让我们的思想追求有了质的变化!这也是我们现代教育所追求的;二 学习数学可以提升我的逻辑思维能力和运算等抽象能力,但好多人觉得数学和实际遥不可及,可是呢,数学建模则成为了解决这种现象的杀手锏,因为数学建模就是为了培养大家的分析问题和分解决问题的能力。
在学习了数学模型后,它所教给我们的不单是一些数学方面的知识,比如说一些数学计算软件,学习建模的同时,借用各种建模软件解决问题是必不可少的matlab,lingo,等都是非常方便的。数学模型是数学学习的新的方式,他为我们提供了自主学习的空间,有助于我们体验数学在解决实际问题中的价值和作用,体验数学与日常生化和其他学科的联系,体验综合运用知识和方法解决实际问题的过程,增强应用意识;而且数学模型还对我们有综合能力的培养、锻炼与提高。它培养了我们全面、多角度考虑问题的能力,使我们的逻辑推理能力和量化分析能力得到很好地锻炼和提高。而且我认为数学模型带给我的是发散性思维,各种研究方法和手段。教会我凡事要有自己的创新,自己的严密思维,不能局限于俗套。总之学习数学模型有利于激发我们的学习数学的兴趣,丰富我们学习数学探索的情感体验;有利于我们自觉体验、巩固所学的的数学知识。还锻炼了我们的耐心和意志力。
Ⅲ 数学建模美赛 参加培训班很重要吗
英语四级行要能写基本句没语错误
我数建模竞赛高级别每九月份举办全数建模竞赛竞赛论文摘要要求翻译英文且现数模竞赛都网查资料、翻译所要网络...网翻译英文行
Ⅳ 准备大学生数学建模需要多久
准备方式:
1. 在组队的时候需要考虑队伍成员的多元化,尽量和不同专业、不同特长的同学组队。因为同系同专业甚至同班的话大家的专业知识一样,如果碰上专业知识以外的背景那会比较麻烦的。所以如果是不同专业组队则有利的多。因为数学建模题有可能出现在各个领域,这也是数学建模适合各个专业学生参加的原因所在,也是数学建模竞赛赛事的魅力所在。
2. 在数学建模竞赛中,每个人都有自己的任务,因此每个人都应该明确自己的定位,根据自己的特点选择队友。众所周知,数学建模竞赛题主要是依靠数学和计算机来完成,所以在组队的时候需要优先考虑队中有这方面才能的人。因此在竞赛中有两种人是必需的:一个是对建模很熟悉、对各类算法理论熟悉,在了解问题背景后能建立模型,设计求解算法,一般来说这样的任务对专业没有特别要求,适合各个专业的同学参加,因为这项任务所需要的能力是可以锻炼的,通过平时的学习以及数学建模的培训,大家可以达到一定的水平;另一个是能将算法编制程序予以实现,求得数学问题的解,这项任务对计算机要求比较高,一般适合信息学院或软件学院的学生参加,这点是非常重要的,因为很多队伍都存在建模与求解之间脱节的情况,在比赛中需要建模与求解相互配合,这样才能获得好成绩。第三个人一般要从写作角度考虑,就是主要承担写作任务,从专业方面看有没有特别的要求,当然最好来自不同专业的学生参加,在数学建模中各种背景的问题都会出现,所以由各种不同专业学生组成的团队可以弥补专业知识方面的不足。如果是参加美国大学生数学建模竞赛的,那么英语能力又是必须考虑的,特别要有一个英语写作能力强的同学来担任写作。
3. 最后在选择队员时还有一点非常重要,就是一定要选择和自己志同道合的同学加入自己的队伍。如果两个人合不来,无论各自的能力有多强,在竞赛中把时间浪费在无谓的争论中,也是无法获得好成绩的。这其实也就是前面一直在说的三个人一定要有团队各做精神。
当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述,也就是建立数学模型。然后用通过计算得到的结果来解释实际问题,并接受实际的检验,这个建立数学模型的全过程就称为数学建模。
Ⅳ 我是学文科的,但对数学建模感兴趣,不知对于我这种情况学这个有问题么
数学建模需要各方面的人才啊!你可以在你的建模小组里发挥你的特长就行了!不回必要什么答都学的!
比如,你可以负责收集数据,负责调查什么的!
反正税务专业这些都是懂的嘛!
如果电脑玩得开就负责电脑的那些程序片段咯!
Ⅵ 美赛数学建模怎样准备
还有几来天,如果队员都自在的话建议你们模拟一次整个建模比赛的过程,锻炼一下配合以及调整时间的分配。还有几天比赛,至于建模能力,这个不是临时抱佛脚的事,多阅读阅读往届建模论文吧,一定是英文的。论文的各内容所占的比重要有数,如果有时间自己写一篇英文论文试试。培训都是被动的,建模可是要主动出击啊。
Ⅶ 学习数学建模有用什么用处
帮助将实际问题转化为数学或数字问题,更主要的是培养数学思维,培养思考问题的能力和寻找思考问题的角度。实际上是一种思维训练
Ⅷ 数学建模活动与一般数学课的区别
应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Mathemathmatica,Matlab,Mapple,甚至排版软件等。